
09/10/16 12:03Working with NSProgress — All about swift

Page 1 of 8http://www.allaboutswift.com/dev/2016/6/4/working-with-nsprogress

Jun 4
Working

with
NSProgress

During my research for my last week's blog about CoreData's

asynchronous API, I stumbled upon NSProgress. I was kind of

surprised the way NSProgress was used and how the

asynchronous CoreData requests got aware of it since there was

no explicit handover. So I decided to take a closer look at

NSProgress for this week's blog post.

If you haven't read my last week's blog

(http://www.allaboutswift.com/dev/2016/5/29/asynchronous-

core-data-requests) (which you should right after you finished

this one) you might ask yourself what NSProgress is about. Well,

NSProgress is a class that had been introduced with iOS7 to

assist in tracking progress of any kind. For this purpose, it's got

three properties

totalUnitCount: number of total units

completedUnitCount: number of completed units.

The operation is complete if completedUnitCount equals

totalUnitCount

fractionCompleted:

the progress completed in percent ranging from 0 to 1

with 1 being 100%

A key feature of NSProgress is that it can have one or more child

instances of NSProgress. Consider for example that you want to

to copy a folder from location A to B. For the sake of this

example let's assume that the folder has 10 images and that each

image will be converted to a PNG once it's been copied. So you

A L L A B O U T S W I F T (/)

http://www.allaboutswift.com/dev/2016/5/29/asynchronous-core-data-requests
http://www.allaboutswift.com/

09/10/16 12:03Working with NSProgress — All about swift

Page 2 of 8http://www.allaboutswift.com/dev/2016/6/4/working-with-nsprogress

have one operation which consists of 10 sub operations which

can be further split up into a copy operation and conversion

operation. The resulting progress - tree can be seen in Picture 1

below.

Picture 1 NSProgress tree

There is one NSProgress with a total unit count of n which has

has n child instances with a total unit count of 1 which again

have two child instances with a total unit count of 1. The

interesting part of it is that you can charge each child progress

with a certain amount of units of the total progress. While the

operation is progressing, the completed unit count of each child

progress is propagated up to its parent progress which results in

the root progress having the total progress of the whole

operation at each given moment.

There are basically two ways to add a child progress, explicitly

and implicitly, about which I want to talk about in the following

two sections.

Explicitly adding a child

progress

Explicitly adding a child is in my opinion the better approach. It

is the more description variant since it tells any reader of your

code what is going on. Let's take a look at some sample code:

09/10/16 12:03Working with NSProgress — All about swift

Page 3 of 8http://www.allaboutswift.com/dev/2016/6/4/working-with-nsprogress

func doMainTask(parentProgresss :

NSProgress,pendingUnitCount : Int64) {

 let childProgress = NSProgress(totalUnitCount:

Int64(100))

 parentProgresss.addChild(childProgress,

withPendingUnitCount: pendingUnitCount)

 for task in 1...100 {

 doSubTaskTask(childProgress,unitCount: Int64(task))

{

 childProgress.completedUnitCount = Int64(task)

 }

 }

}

let progress = NSProgress(totalUnitCount: 1000)

doMainTask(progress,pendingUnitCount: 200)

doMainTask(progress,pendingUnitCount: 200)

doMainTask(progress,pendingUnitCount: 100)

doMainTask(progress,pendingUnitCount: 500)

In this example a main NSProgress instance is created with a

total unit count of 1000, which subsequently is distributed

among its four child progresses. Each child progress is created

via NSProgress(totalUnitCount:) with a total unit count of 100

and charged against the main progress accordingly via

addChild(child:withPendingUnitCount). Every time a subtask of

a child progress completes, the completed unit counter is

incremented.

This approach is straightforward and descriptive. It's main

advantage in my opinion however compared to the implicit

version is that there is no global variable. More about that later.

The capabability of explicitly adding a child has been made

available with iOS9. So you have to fall back to the implicit

version if you still need to support older versions of iOS.

Implicitly adding a child

progress

You encounter the implicit version when you are working with

the asynchronous CoreData API or when you want to track the

progress of NSData related tasks. The implicit version relies on

thread local storage and hence makes the current progress

available to each method running in that thread. If you never

heard of thread local storage before look at it as address space

09/10/16 12:03Working with NSProgress — All about swift

Page 4 of 8http://www.allaboutswift.com/dev/2016/6/4/working-with-nsprogress

whose scope is restricted to one thread. Let's look at our

previous example which has been adapted to add children to the

root progress implicitly.

func doMainTask() {

 let childProgress = NSProgress(totalUnitCount:

Int64(subTasks))

 for task in 1...subTasks {

 doSubTaskTask(childProgress,unitCount: Int64(task)) {

 childProgress.completedUnitCount = Int64(task)

 }

 }

}

let progress = NSProgress(totalUnitCount: 1000)

progress.becomeCurrentWithPendingUnitCount(200)

doMainTask()

progress.resignCurrent()

progress.becomeCurrentWithPendingUnitCount(200)

doMainTask()

progress.resignCurrent()

progress.becomeCurrentWithPendingUnitCount(100)

doMainTask()

progress.resignCurrent()

progress.becomeCurrentWithPendingUnitCount(500)

doMainTask()

progress.resignCurrent()

First we create an instance of NSProgress to track the total

progress. Then we add each child progress one by one. Before

we can add a child progress we have to make our total progress

the current Progress. This is done via

becomeCurrentWithPendingUnitCount(_:). The

pendinUnitCount part of the method determines how many

units will be assigned to the child progress. After that the child

just needs to be created via NSProgress(:totalUnitCount:).

NSProgress' initializer checks if there is a current progress and

adds the new progresss as one of its children. The child progress

setup has to be concluded with a subsequent call to

resignCurrent().

Mind that the child progress has to be immediately setup on the

main thread (after becomeCurrentWithPendingUnitCount(_:)). It

has to be done immediately due to the call to resignCurrent()

and needs to happen on the same thread to enable the child

progress to assign itself as a child.

09/10/16 12:03Working with NSProgress — All about swift

Page 5 of 8http://www.allaboutswift.com/dev/2016/6/4/working-with-nsprogress

What's the advantage of this approach? Some argue it's a very

loosely coupled implementation since the various NSProgress

instances don't have to be made aware of each other. In my

opinion it's a geek's version of how to setup child progresses and

hence I don't see any advantage over the explicit version. I think

it's the worse version. It's not just that there is more code

involved which is not very descriptive since it lacks to

communicate intent (*1). You even have to be aware of the

implicit contract that is in place here (setup child progress a)

immediately b) on the same thread) which makes it a terrible

interface to use.

Do you remember what I said above about building a hierarchy

of NSProgress instances? Well, using the implicit method you

have to do this asynchronously. Since there is only one current

progress at a time, the newly create progress in doMainTask()

can only set itself up as the child (which happens in the

initializer). If it wants to add other children implicitly, it needs

to postpone this e.g. via dispatch_async(). If you think that is

cumbersome then you are absolutely right.

Since we got this particular feature of NSProgress covered let's

talk in the remaining two sections about how to monitor

progress and how to cancel an operation in progress with

NSProgress.

Monitoring progress

Monitoring progress is done via Key Value Observation (KVO).

completedUnitCount and fractionCompleted are both key-value

observable. Just setup an observer and handle any updates in

observeValueForKeyPath().

let progress = NSProgress(totalUnitCount: 1000)

let observer = KeyValueObserver(target: progress, keyPath:

"fractionCompleted") { (keyPath, dict) in

 let value = dict!["new"] as! Double

 progressUI.progress = Float(value)

}

KeyValueObserver() is just a block based wrapper for KVO.

Whenever a child progress gets updated, the change is

propagated to the root progress instance which triggers a KVO

call that eventually ends up in the block provided to

KeyValueObserver(). Here we extract the current progress and

update the UI (a UIProgressView) accordingly.

Cancellation

09/10/16 12:03Working with NSProgress — All about swift

Page 6 of 8http://www.allaboutswift.com/dev/2016/6/4/working-with-nsprogress

Cancellation with NSProgress is straightforward. If you have

ever worked with NSOperations then you know how it works. In

your child operation you have to check if it is cancelled via the

cancelled property of its associated progress. Then when the

main task gets cancelled via its associated progress' cancel()

method, you need to act upon it and stop any further work on

the current subtask.

func doMainTask(progresss :

NSProgress,pendingUnitCount : Int64) {

 let childProgress = NSProgress(totalUnitCount:

Int64(100))

 progress.addChild(childProgress,

withPendingUnitCount: pendingUnitCount)

 for task in 1...100 {

 guard !childProgress.cancelled else {

 break

 }

 doSubTaskTask(childProgress,unitCount: Int64(task))

{

 childProgress.completedUnitCount = Int64(task)

 }

 }

}

let progress = NSProgress(totalUnitCount: 1000)

cancelButton.touchHandler = { _ in

 progress.cancel()

}

I highlighted the relevant sections in bold. The cancel() method

in the touch handler sets the cancelled flag which then each

child working on a subtask acts upon.

Conclusion

If you need to track progress of any kind, there is no need to

waste time implementing some custom class to do so.

NSProgress does a very neat job here. It however has its

shortcomings. Let me address a few of those:

1. hardly supported

NSProgress is already around since iOS7 but Apple's own

frameworks (appart from CoreData and NSData) take

hardly advantage of it. In the two instances Apple does,

you need to use the implicit version which I don't like at

all. I am sure if Apple decided to give it more prominence

by using it more often, we all ended up paying it some

more attention.

09/10/16 12:03Working with NSProgress — All about swift

Page 7 of 8http://www.allaboutswift.com/dev/2016/6/4/working-with-nsprogress

frank saar (/?author=56e4898ef699bb97173ad019)

NSProgress (/?tag=NSProgress), CoreData (/?tag=CoreData),

NSData (/?tag=NSData)

 (HTTPS://WWW.FACEBOOK.COM/SHARER/SHARER.PHP?U=HTTP%3A%2F%2FWWW.ALLABOUTSWIFT.COM%2FDEV%2F2016%2F6%2F4%2FWORKING-WITH-NSPROGRESS)

 (HTTPS://TWITTER.COM/INTENT/TWEET?URL=HTTP%3A%2F%2FWWW.ALLABOUTSWIFT.COM%2FDEV%2F2016%2F6%2F4%2FWORKING-WITH-NSPROGRESS&TEXT=)

 (HTTPS://PLUS.GOOGLE.COM/SHARE?URL=HTTP%3A%2F%2FWWW.ALLABOUTSWIFT.COM%2FDEV%2F2016%2F6%2F4%2FWORKING-WITH-NSPROGRESS)

2. problematic interface when adding children implicitly

It's a terrible interface to use and I don't think it has any

future. The future is Swift and this is no Swift way of

doing things.

3. cumbersome progress observation

Monitoring progress via KVO is again not the way things

are done in Swift . If you take a look at the documentation

for NSProgress you can see that it has block support. There

is a cancellation handler, a resume handler and a pause

handler. Why not add a progress handler and a

completion handler and get rid of the need to use KVO? I

am surprised to see this hasn't happened already. Well,

iOS X is around the corner. Let's see ...

Before I conclude this blog, let me tell you that you can find the

complete code of the samples I've shown here in a playground

on github

(https://github.com/fsaar/allAboutSwift/tree/master/NSProgress).

*1 Just look at the explicit version. Any method that exposes a

NSProgress as a parameter 'parentProgress' gives you an idea of

what's going to happen. The implicit version doesn't do this. It's

not clear at all that something's going to happen here with the

current progress between the two calls of

becomeCurrentWithPendingUnitCount(_:) and resignCurrent().

http://www.allaboutswift.com/dev/2016/6/12/qouw296w2sjpt74qea20rp1yiyhbjd
https://www.facebook.com/sharer/sharer.php?u=http%3A%2F%2Fwww.allaboutswift.com%2Fdev%2F2016%2F6%2F4%2Fworking-with-nsprogress
https://twitter.com/intent/tweet?url=http%3A%2F%2Fwww.allaboutswift.com%2Fdev%2F2016%2F6%2F4%2Fworking-with-nsprogress&text=
https://plus.google.com/share?url=http%3A%2F%2Fwww.allaboutswift.com%2Fdev%2F2016%2F6%2F4%2Fworking-with-nsprogress
http://www.allaboutswift.com/dev/2016/6/4/working-with-nsprogress#
http://www.allaboutswift.com/?author=56e4898ef699bb97173ad019
http://www.allaboutswift.com/?tag=NSProgress
http://www.allaboutswift.com/?tag=CoreData
http://www.allaboutswift.com/?tag=NSData
https://github.com/fsaar/allAboutSwift/tree/master/NSProgress

09/10/16 12:03Working with NSProgress — All about swift

Page 8 of 8http://www.allaboutswift.com/dev/2016/6/4/working-with-nsprogress

Jun 12 Working with Time Profiler

(/dev/2016/6/12/qouw296w2sjpt74qea20rp1yiyhbjd)

May 29 Asynchronous Core Data Requests

(/dev/2016/5/29/asynchronous-core-data-requests)

Powered by Squarespace (http://www.squarespace.com?

channel=word_of_mouth&subchannel=customer&source=footer&campaign=4fd1028ee4b02be53c65dfb3)

http://www.allaboutswift.com/dev/2016/6/12/qouw296w2sjpt74qea20rp1yiyhbjd
http://www.allaboutswift.com/dev/2016/5/29/asynchronous-core-data-requests
http://www.squarespace.com/?channel=word_of_mouth&subchannel=customer&source=footer&campaign=4fd1028ee4b02be53c65dfb3

